pr=—x — )

-

AD=Ap43 852 CALIFORNIA UNIV LOS ANGELES DEPT OF SYSTEM SCIENCE F/6 12/} “'
A NOTE ON WEAK STABILIZABILITY OF CONTRACTION SEMIGROUPS, (U) :
JUL 77 C D BENCHIMOL AF=AFOSR=2492=73
UNCLASSIFIED AFOSR=TR=77=1152

| oF |

::1%‘1_195;-
= END

| DATE
i FILMED
- 9 =77
; DX

L]




AFOSRTR- 77- 1152
ADA043852

e ——

DOG FiLE COPY

A NOTL ON WEAK STABILIZABILITY
Oor

CONTRACTION SEMIGROUPS

Claude D. Benchimol
System Science Department
University of California at los Angeles,
California 90024

Approved for public release;
distribution unlimited.

"The U. S. Govern

and sell this pe
S repert, > :
reproductiop by others rornission

the copyrignt owner,s o PO Obtained grogm

ment ig

Y}

Research supported in part under Grant No. 73-2492 Applied Math Division,

ATOSR, USAF.




TR

Abstract

A recent result on weak stabilizability is that the system
% = Ax + Bu, vhere A is the infinitesimal generator of a contraction
semigroup over a Hilbert Space H, and B is linear bounded is weakly
stabilizable if: (i) A has a compact resolvent and (ii) (A,B) is
(approximately) controllable. In this note, we show that condition
(i) is superfluous and (ii) can be weakened to (iii) the weakly unstable
states are (approximately) controllable, which actually twmns out to
be a necessary condition. Indeed, if (i) is verified, (iii) is
necessary and sufficient for strong stabilizability. Moreover, we
give a simple, direct proof, using semigroup thecretic techniques,
in particular obviating the need to invoke the "LaSalle Invariance
Principle". The main tool is a decomposition applicable to all
contraction semigroups which is derived from results of Sz. Nagy,

C. Foias and S. R. Foguel.
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1. Introduction:

A standard result (see Wonham [9]) in finite dimension, is that

the time invariant system

0

X = Ax + Bu (1.1)
is stabilizable by feedback
u = Kx

if and only if the unstable modes of the system are controllable. The
extension of this result to infinite dimensional systems, i.e., where
A is the infinitesimal generator of a c, semigroup, and' B is linear
bounded has been the subject of many investigations recently ([6], [8],
[101,[11]). As may be expected, there are many non-equivalent notions
of stability, depending on the topology used. The notion of "weak
stability" would appear to be the weakest. Thus

Definition 1.1

A Cg semigroup T(t) over a Hilbert space H is weakly stable if

Vx, ve B(TCE, vI*0ast ++ 9,

Slemrod [6, Theorem 3.5] shows that if A generates C contraction semigroup T(t)
over a Hilbert space H and B is a linear bounded transformation mapping
a Hilbert space Hi into H, the semigroup generated by A - BB* is weakly

stable provided

(i) A has a compact resolvent (note that for some reason this condition

is stated in terms of A* in [6], although of course the two are equivalent)
(ii) (A,B) is (approximately) controllable.

In his proof, he uses the "LaSalle invariance principle". We shall show




-

(Theorem 3.1) that the assumption (i) is superfluous (and in fact is
sufficient to yield strong stability) and (ii) can be considerably
weakened. Moreover, our techniques are simpler and more directly

semigroup theoretic, relying on a fundamental decomposition of contraction

semigroups, following Sz. Nagy-Foias. We also incidentally indicate
the relevance of the Sz. Nagy-Foias theory [7] to the whole problem.
We begin with some results of interest on their own.

2. Canonical Decomposition for Contraction Semigroups

In this section, we state two decomposition theorems for CO

contraction semigroups, and merge them into one corollary. First, we
recall some definitions:

Definition 2.1: lLet H be a Hilbert space, and V be a bounded operator

' in H. We say that a subspace K reduces V if and only if
[ VK ¢ K and V¥K < K (2.1)

Definition 2.2: A bounded operator V in H is

(1) Unitary if

| VEV = VWE = T

(ii) Completely non unitary (c.n.u.) if there exists no subspace

] other than {0} reducing V to a unitary operator.

. Remark: It follows from (2.1) that both K and K' reduce V and V¥,
Theorem 2.1 [Nagy-Foias] Let T(t) be a Co contraction semigroup in a
Hilbert space H. Then H can be decomposed into an orthogonal sum
H=H, ® H,, vWhere H and H, =~ are reducing subspaces for T(t), such

that
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(1) The restriction ',i‘u(‘L) = ’1(t)|ilu of T(1) to H, is a unitary group.
(ii) The restriction T _ (t) = T(t)[H of T(t) to H is a
cnu cnu cnu
c.n.u. semigroup.
(iii) This decomposition (where of course H, or chu can be trivial)

is unique and H, can be characterized by
H o=f{xely t20 [P0 x| = jIT%) = || = {] = |} (2.2)

Moreover H = K , where X = D(A) n H , (2.3)
u u u u

and A denotes the infinitesimal gererator of T(t).

Proof: Tor the sake of completeness we sketch a proof. For more details

see Sz. Nagy and Foias [7, pp. 9-10 and 136].

If we denote D’I‘(t) = I - T*(t)T(t) and D’l‘* = I - T(t)T*(t), then

(t)

|Ix|| is equivalent to

[1TCOx|] = ||T*(t)x] |
(D,l.(t)x,x) = (D,.;.‘.(t)x,x) =0 (2.4)

Since T(t) is a contraction, D’I‘(t) and DT*"‘(t) are both self adjoint

B
(0’ * NOpscy
where N(+) stands for the Null-Space of an operator. Therefore o=

nonnegative definite. It follows that (2.4) <=> X € N(DT

' ich shows that it is sed. i : i
tﬂ) LN(DT(‘C)) ﬂN(D,p.c(t))],mlch hows that it is closed. Using (2.2), it
is easy to see that “u is left invariant under T(s) and T*(s) for anv s.
To show (2.3) (which is not specifically contained in [7]),we first note

that since Hu is closed,

K,= D) nH cH (2.5)

©0

f e'AST(s)x ds is also in H,» as
0

"

Then, for any x in Hu’ R(A,A)x

easily proved by checking that

TT*(LIR(A,A)x = T*()T(t)R(A,A)x = R(A,A)x
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But R(A,A)x ¢ D(A). Therefore Y i e “u’ AR(AL,A)X ¢ Ku. But we know
that ARQLAX > x as Rek > + @ [1, p. 169]. Hence H, i_iu, vhich
finally implies “u = l_(u, ssociated with (2.5).
The following decomposition theorem is due to Foguel [4]. Here, we give
a simple proof, using mainly elementary properties of contraction
semigroups; this in turn shows the relevence of the contraction assunption
to the stability problem.
Theorem 2.2 [Foguel]l Let T(t) be a C_ contraction semigroup in a Hilbert
space H. Let W = {x e¢ Hy T(t)x — 0 (weakly) as t » + «}, Then

(1) W reduces T(s) for any s.

(ii) On W', T(s) is reduced to a unitary group, or equivalently
W e H .

- u

(iii) W coincides with the subspace {x € H; T*(t)x .20 (weakly) as
£t » «}
‘First, note that W is a closed subspace of H.
‘Proof of (i): Let x ¢ W. Then, for any s > 0,

T(t)T(s)x = T(s + t)x . 0(weakly) as t » + «, and hence T(s)x ¢ W. (2.6)
In order to prove that T%(s)x ¢ W, we need an intermediate result proved below.

T#(t) being a contraction, we have

Vx e H, Y t, 2t ||'l‘*(t2)x||2 = ||T*(1:2-'c1)T*(*cl)x||2 < ||T='=(tl)x||2.

Therefore, for any x, ||T*(t)x| |2 is a non increasing function of t,
bounded from below by 0. Hence, it converges as t + + «, Therefore,
for any fixed s

L3
Z(t) = llT*(t)xH2 - |7 ¢t + s)x||2 *0as t >+ e,

But Z(t) = (T*(t)x, T*(t)x) - (T(s)T*(t)x, T*(t)x)
([T - T(s)T*(s) IT*(t)x, T*(t)x)

|| LI-T¢e) T () 1Y 2

(x|

y

i
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Hence VY xeH, Vs>0 [I-Ts)* )T ()% »0ast >+ w (z.7)

Multiplying it to the left by T#(s), we have

T%(s) [T - T(s)T*(s)IT*(t)x = [I - T*(s)T(s)IT*(t + s)x.
Therefore, it follows that

vxeH, ¥s52>0 [I-Ts)T(s)IT*(t)x >0 ast + e (2.8)
Next, we use the fact that if Y(t) is a bounded linear operator such
that Y(t)x ~ 0 for any x in H, then Y*(t)x >0 (weakly), for any x in H.

Applying this to (2.7) and (2.8), we get Vv xc H, Vs >0

T(t) [I - T(s)T*(s)Ix s 0 (weakly) as t » + « (2.9)

T(t) [I - T*(s)T(s)Ix 50 (weakly) as t + + » (2.10)

Now, we are ready to complete the proof of (i). For, if we take x in ¥,
we have T(t)x 0 (weakly) as t > + =, and subtracting it from (2.9),
we get
= T(OT(s)T*(s)x = - T(t + s)T*(s)x 0 (weakly) as t » + »
S>T(H)T*(s)x - 0 (weakly) as t > + « (2.11)
Grouping (2.6) and (2.11), we have

xeW = (T(s)x e W

T*(s)x e W
Therefore W and W' reduce T(s), for any s.

«Proof of (ii):

(2.9) and (2.10) can be interpreted as:

(2.12)

R(Dys,.y) = Range [I - T(s)T*(s)] c¢ W
l 1"(5) ol
For any s

R(DT(S)) = Range [I - T*(s)T(s)] c W

DT*(s) and DT(s) being self adjoint, we have

[45]




e
(S)) 5 N(uf*(s))

'L -
) = N(D'l‘(s))

RCD,...
1..

R(D‘l‘(s)

Therefore (2.12) is equivalent to

2 1
Vs 20 W Ny g0 NCD, )
o Wew INGE. o on k. )] = H
= T(s) T (s) u

which completes the proof of (ii).

*Proof of (iii)

let x ¢ W. Any y in H can be uniquely decomposed as y = Y ¥ Yt

where y,, € Wand yt e W',

Then (T#(t)x,y) = (T#(t)x, Yy t wa.) ‘
= (x, T(‘t)yw) + (%, T(t)ywl)

Since W' reduces ECE) S T(t)ywl e W and (x, 'l‘(t)ywi) = [0

But since y,, € W, T(t)yw 0 weakly as t » + »© and (T*(t)x,y) =

(x,T(t)yw) +0as t ++ «and T"(t)x 20 (weakly) as t > + o,

Reversing the role of T(t) and T#(t), we can show that T*(t)x A0

(weakly) = T(t)x A0 (weakly), which completes the proof.

Ve can unite the two theorems into the following corollary.

Corollary 2.1. lLet H be a Hilbert space, and T(t) a Co contraction

semigroup in H. Then H can be decomposed into three orthogonal

subspaces H_ W, and Wl, all reducing T(t) and T#(t), such that

wu@wl = H

wu ® chu = W (with the above notations).

It follows that,

“On H s T(t) is completely non unitary, and weakly stable




+On ‘.'Ju, T(t) is unitary and weakly stable

-0On WL, T(t) is unitary, and Y x e WJ', T(Ox A0 and T%(t)x A0
as €t = 4 =,

Proof: Yollows imrediately from the two thcorems.

The above result motivates the following definition:

Definition 2.3: Let T(t) be a Cy contraction senigroup over a Hilbert

space H. Then W = {x; T(t)x »0 (weakly) as t » + =} is called the

weakly stable subspace.

W' is called the "weakly unstable subspace" and elements of Wt are called

"weakly unstable states'.

[Of course T(t)x 40 as t » + » does not imply that x ¢ W :]

3. Necessary and gufficient condition for weak stabilizability of C

TN

contraction semigroups.

In order to prove the main theorem of this section, we need sone
preliminary results. First, we recall what is meant by "controllability".

Definition 3.1 Consider the system

x = Ax + Bu (3.1)

where A generates a Cj semigroup T(t) over a Hilbert space H and B is
a linear bounded operator mapping another Hilbert space H‘i into H, The
set C of x in H, for which given any € > 0, there exist a t > 0 and u(-)
in L,Z[(D,t); H.] such that
.
[ % -f T(t - 0) Bulo)do|| < e (3.2)
0

is called the set of (approximately) controllable states. If C = H, the

system is approximately controllable. See [1].
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lema 3.1: With the above notations, C is a closed subspace and can be

characterized by

C = U Rage [1(t)B] (3.3)
>0
It follows that

1

¢t = Y NBErE(o)T. (3.1)
>0

Tl :
C(resp. C7) is called the (approximately) controllable (resp. uncontrollable)

subspace.

Proof: See [1, pp. 207-210]

lext, we state two perturbation results.

lemma 3.2: lLet A be the infinitesimal operator of a C semigroup T(t)
in a Hilbert space H, and D be a bounded operator in H. 'Then A + D
generates a Cg semigroup S(t) in H., Fuwrthernmore,

(1) If A and D are self adjoint, so.is S(t), for any t > 0.

(ii) If A and D are dissipative, S(t) is a contraction semigroup.

(iii) If A has a compact resolvent, so does A + D.

(iv) If T(t) is compact, for any t > 0, so is S(t).

Proof: See [1, pp. 220-225]

lemma 3.3 Let K be any bounded operator mapping a Hilbert space Hi into
H. Let S(t) denote the semigroup generated by A + BX. Then Y t > 0,
B*I*(t)x = 0 if and only if Yt > 0, B*S#*(t)x = 0. (The (approximately)
controllable subspace of (A,B) coincides with the one of (A + BK, B)).
Proof: Follows immediately from the identities

t
SE(t)x = THE(t)x + f Tt - 0)K*BHS*(0)xdo (3.5)
0

-—-»‘A




and
t
TH(t)x = S*(t)x _f S%(t - O)K*B*T%(0)xdo (3.6)

0
Theorem 3.1: Let A be the infinitesimal generator of a Co contraction
semigroup T(t) in a Hilbert space H, and B a bounded operator mapping
another Hilbert space H, into H. Then, the system % = Ax + Bu is

i
weakly stabilizable if and only if the "weakly unstable states" of T(t)
are (approximately) controllable, and K = - B* is a stablizing feedback
gain.

Proof:

let C be the controllable subspace of (A,B), as defined above. Let W

be the weakly stable subspace of T(t), as defined in Section 2. Then

the theorem can be expressed as

(A,B) is weakly stablizable <=> W' < C <=>C' c W,

(1) Necessity

Suppose there exists a bounded operator K such that A + BK generates a
weakly stable semigroup S(t). Then, let x € ct. By definition of CJ',

we have ¥ t > 0 B*I*(t)x = 0. Therefore, from (3.6), we get

VyeH (THt)x,y) = (S*(t)x,y) = (x,5(t)y) ~ 0 as t » + «, by assumption.

Therefore T#(t)x » 0 (weakly) as t > + », and since T#(t) is a contraction,

we can use (iii) of Theorem 2.2 to prove that T(t)x > 0 (weakly) as
tr+o >xelW SoC cW. QE.D.

(ii) Sufficiency.

hssume C* € W. Let K= - B* be the feedback gain, Then - BB¥ is
obviously a bounded dissipative operator, and by (ii) of Lemma 3.2,

A - BB* generates a contraction semigroup S(t). Then, applying the

——
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Theoram 2.1 to S5(t), we obtain a decomposition of H into two orthogonal

S . ‘ . S . ,
subspaces H’, reducing S(t) to a witary group, and ”c)"m’ reducing S(t)

to a c.n.u. semigroup. Then, by Corollary 2.1, we have

V X € HS

Q NOE "‘7." as t > + o
C]‘lll’ u(l)x e (i) (Uv 1K y) 1=

[ =3
Therefore, it only remains to prove that S(t) is weakly stable on Ii;.

o o
Define }C:l as in Theorem 2.1. Then, for any x in K& ¢ D(A) we have

Vot > 0 St %= (A% - BBOSH(Dx,5%(0)x + (5%(0)x, (A% - BEDSHOR) = 0

Since A* and - BB* are dissipative, the above equation implies that

V t >0 Bss*(t)x = 0.
But, by Lemma 3.3, this implies that Y t B*T#(t)x = 0 or equivalently

% ¢ €. So

xeK“3=> xeC K3:7)
But by assumption ¢ < W. Therefore

Xe}<‘3=> XxeW (3.8)
Using (3.6) and (3.7), we get:

Vizo,Vxex sit)xs=Titx,
Since x € W, T*(t)x > 0 (weakly) as t -+ + @, by (iii) of Theorem 2.2.
So does S*(t)x, and so does S(t)x by the same argument.
Therefore Yx ¢ Kﬁ, S(t)x >~ 0 (weakly) as t » + », Since Ki is dense
in Y (Theorem 2.1), and |[S(1)[| < 1, then, for any x in HD, S(t)x s 0
(weakly) as t » + », by the triangular inequality. This completes the
proof.

10
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Corollary 3.1: If A generates a (Y( contraction semigroup and hzs a
)

compact resolvent, the condition of Theorem 3,1 is necessary anc
sufficient for the strong stabilizability of (A,B). In particular, A-BB#
generates a strongly stable contraction semigroup.

Proof':

(1) Necessity: Follows from the fact that strong stability = weak
stability.

(ii) sufficiency: FIrom (iii) of lerma 3.2, A - BB* has a compact
resolvent R(A, A - BB*) and gencrates a contraction semigroup S(t), vhich
is weakly stable by Theorem 3.1. let X _be a point in the resolvent

set of A - BB*. Then, for any x in D(A), there exists a y in E such
EHaE X = R(/\O, A - BB%)y,

Then S(b)x = S('t)R()\O, A - BB%) y

n

RO, A = BBES(y
Since YV y € H,S(t)y = 0 (weakly) as t » + », and since R(,\o, A - BB¥)
is compact
Vxeda) S(tix>0as t >+ o,
Since D(A) is dense in H, and |[S(D)]|]| < 1,

VxeH, S(t)x >0as t »+ o Q.E.D.

Corollary 3.2: 1f A generates a Cj contraction self adjoint semigroup,
the condition of Theorem 3.1 is necessary and sufficient for tha
strong stabilizability of (A,B). In particular A - BB* generates a
strongly stable self adjoint contraction semigroup.

(i) As in Corollary (3.1)

(ii) Sufficiency

By (i) and (ii) of lemma (3.2), A - BB* generates a self adjoint

contraction semigroup S(1) which is weakly stable, by Theorem 3.1.

11




Therefore Y x ¢ H (S(2t)x,x) * 0 as t + +
But (5(2t)x,x) = (S(B)S(t)x,x) = ||S(t)x| I? +0as t»+m QE.D,

Coraliary 3.3: If A gencrates a compact contraction semipgroup, the

condition of Theorem 3.1 is necessary and sufficient for the exponential
stabilizability of (A,B). In particular, A - BB* generates an exponentially
stable contraction semigroup.

Proof: Necessity as before.

Sufficiency follows from the fact that for a compact semigroup

Weak Stability = Exponential Stability. See [3].

This corollary is also a consequence of the sufficient condition proven

in [8].

L4, Conclusion and Remarks

Triggiani [8] has given a number of counterexamples of systems which
are (approximately) controllable (A.C.) but not strongly stabilizable
(S.8.). This paper shows that the A.C. of the weakly unstable states
implies the weak stabilizability (W.S.) of the system, provided T(%) is
a contraction semigroup*. In particular, wave equations, vhich generate
unitary groups in general, can be weakly stabilized if (A,B) is A.C. and
strongly stabilized if in addition, the domain happens to be compact
(thus insuring the compactness of the resolvent).

Yor further results involving semigroups other then contractions, we
refer to [2].

Aknowledgment: The author wishes to thank Dr. N. Levan for illuminating

discussions on Sz. Nagy and Foias' theory.

* The author was informed by one of the referces that a sufficient condition
for weak stabilizability (A.C. => W.S8.) was independently and simultaneously
obtained by R. E. O'Brien [5]. Our result is a necessary and sufficient
condition which shows that the system need not be A.C. on the whole space,
in order to be weakly stabilized.

12

|
ﬂ
|



e —

’ (1]

(2]

(3]

[u]

(el

L8l

[9]

[10]

‘ (11]

REFTLRENCES

A. V. BALAKRISHNAN, Applied Functional Analysis, Springer-Verlag,
New York (1976).

C. D. BENCHTIOL, The Stabilizability of Infinite Dimensioral Linear
Time-Invariant Systems, Ph.D. Thesis, University of California at
Los Angeles (1977).

R. DATKO, Uniform Asymptotic Stability of Evolutionary Processes
in a Banach Space, SIAM J. Math Anal., 3 No 3 (1972), pp. 428-u45,
Sy R, IU{,;U};l,, Powers of a Contraction in Hilbert Space, Pac. J. Math.
13 (1963), pp. 551-562,

R. E. O'BRIEN, Controllability, Stabilization and Mean Ergodic
Theorems - George Vashington University and Goddard Space Flight
Center (1976).

M. SLEMROD, A Note on Complete Controllability and Stabilizability
for Linear Control Systems in Hilbert Space, SIAM J. Control,

12, No 3 (1974), pp. 500-508.

Sz. NAGY & FOIAS, Analyse Harmonique des Operateurs de 1'Lspace de
Hilbert, Masson & Cie, Akademiai Kiado, Budapest (1967).

R. TRIGGIANI, On the Stabilizability Problem in Banach Space,

J. Math. Anal. Appl., 52 (1975), pp. 383-403.

W. M. WONHAM, On Pole Assignment in Multi-Input Controllable
Linear Systems, IELEE Trans. Automatic Control, ACl2, No 6 (1367),
pp. 660-665.

J. ZABCZYK, Remarks on the Algebraic Riccati Equation in Hilbert
Space, Appl. Math. Optim., 2, No 3 (1976), pp. 251-258.

J. ZABCZYK, Complete Stabilizability Implies Ixact Controllability,

Seminarul de Ecuatii Funtionale, Universitatea din Timisoara, Roumania,

(1976).

13

f’.—.—"

 —— R ——




T ———— - e

FR e oA A e T L

LA A Ay ' v Lot

. ————p e . o Bt P D 20 S . ————

REPOH. DOCUMENTATION PAGE ‘ READ INSTRUCTIONS

BEFORE COMPLETING FORM

T B - 7 — 2 GOVT ACCLSLION NO| 3 RECIPIENT ST ATALOG NUMABE R
, JAFESRTR—T+—115 2
4 — .

TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

6 AA NOTE ON WEAK STABILIZABILITY OF ° Interim

. CONTRACTION SEMIGROUPS,

s 6 PERFiRMING ORG REPORY NUMBER

7 AU THOR( =) 8. CONTRACT OR GRANT NUMBER(s)
R - ———
\ [ \ | 2 o \ e
|/ /Claude D. /‘Benclum)l g A }=— AFPOCR E8-2492- ’7 =
9 PER-ORMING ORGANIZATION NAME AND ADDRESS g " S ROGRAM ELENENT, PROJECT, TASK
University of California, Los Angeles SRERETNOREUNI TINLIMBERS
System Science Department * . GILO2E /‘/ /\ y \
Los Angeles, CA 90024 ( /é) 2304/ Al '\\/_/ b o—
e ——
11. CONTROLLING OFFICE NAME AND ADDRESS ~J12. REPORT DATE
Alr Force Office of Scientific Research (NM) // T é77
Bullc'hng “10 . L ATrweer C){,le“’ = N
Bolling AFB Washington, D. C. 20332 13 (] 2 /g{
3 () = e
T4, MONITORING AGENCY NAME 8 ADDRESS(If differant from Controlling Office) | 16 SECURITY (,LASMN“
UNCLASSIFIED
[ '5a DECLASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

b s e

‘7 LISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

A SUPPLEMENTARY NOTES

To be published in SIAM J. Control & Optimization

19 KEY WOROS (Continue on reverse side if necessary and identify by block number)

dot

—— —

-

20 ABSTRACT (Continue on reverse side If negessary and igentity by block pumber) i s T
A recent result on weak stabillizability 1s that the system x,= Ax + Bu, where A

is the infinitesimal generator of a contraction semigroup over a Hilbert Space H,
and B is linear bounded is weakly stabilizable if: (i) A has a compact resolvent
and (ii) (A,B) is (approximately) controllable. In this note, we show that
condition (i) is superfluous and (ii) can be weakened to (iii) the weakly unstabl
states are (approximately) controllable, which actually turns out to be a

necessary condition. Indeed, if (i) is verified, (iii) is necessary and sufficieht

W

.
Nag

for strong stabilizability. More(bbr,fe—gm a simple, direct proof,c’us‘i{ng -
- Quan)

DD, on'ys 1473  €oiTion oF 1 NOV 68 15 0BSOLETE UNCLASSIFIED

/ // / AT / ’ SFCURITY CLASSIFICATION OF THIS P{E When Da‘a Fotered
> / {71 — “ i 8% 4 ¢
L,/ / - . .

s




)

o —————

CUkit rOLIFICATION OF

THIS PAGE(When Data Entered)

semigroup theoretic techniquese in particular obviating the need to
invoke the ™lLaSalle Invariance Frinciple® The main tool is a
decomposition applicable to all) contraction semigroups which is
derived from results of Sz. Nagy, C. Foias and S. R. Foguel.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

T~

—r=

TR e



